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A B S T R A C T

Largemouth Bass Ranavirus (LMBV) causes severe mortality in largemouth bass (Micropterus salmoides), signif
icantly threatening aquaculture sustainability. Conventional PCR-based methods for LMBV detection are 
resource-intensive, requiring specialized equipment, skilled personnel, and purified DNA samples, thus limiting 
their practical applications. Here, we established a simplified, purification-free loop-mediated isothermal 
amplification (LAMP) assay integrated with a portable fluorescence detection device (WeD-1) for rapid and 
sensitive detection of LMBV. Using an in vitro infection model, we demonstrated that crude lysates from mini
mally invasive samples, particularly peritoneal fluid, could be directly used in LAMP assays without nucleic acid 
purification. The entire detection workflow—from sample collection to result interpretation—was completed 
within 40  minutes (min). This approach provides a sensitive, rapid, and cost-effective diagnostic method for 
early detection of LMBV and can potentially be extended for rapid detection of other aquatic pathogens.

1. Introuduction

Largemouth bass (Micropterus salmoides), originally native to North 
America, has emerged as a cornerstone species in Asian aquaculture, 
especially in China (Li et al., 2022; Yang et al., 2024a). However, rapid 
expansion of aquaculture combined with environmental degradation 
has resulted in frequent disease outbreaks, significantly threatening in
dustry sustainability (Lafferty et al., 2015; Yang et al., 2024a). Among 
these threats, Largemouth Bass Ranavirus (LMBV) is the most severe, 
causing high mortality rates and posing major challenges for disease 
management globally (Yang et al., 2024b; Yang et al., 2024c). LMBV, a 
large double-stranded DNA virus of the genus Ranavirus within the 
Iridoviridae family, replicates in the host cytoplasm. Currently, no 

effective treatments exist for LMBV infections (Chen et al., 2024; Wang 
et al., 2023), highlighting the critical importance of early diagnosis and 
routine pathogen screening in aquaculture systems (Cao et al., 2024; 
Guo et al., 2022; Zhang et al., 2022; Zhu et al., 2020).

Polymerase chain reaction (PCR) remains the standard diagnostic 
method for LMBV due to its high sensitivity. Nevertheless, PCR is 
resource-intensive, requiring specialized laboratories, expensive in
struments, trained personnel, and lengthy procedures, all contributing 
to high per-sample costs (Yang et al., 2024b). Although rapid detection 
techniques have been introduced, most still involve DNA purification, 
which requires additional equipment and technical expertise, limiting 
practical field deployment (Guang et al., 2024; Guo et al., 2022; Jiang 
et al., 2023; Zhang et al., 2022; Zhu et al., 2022). Therefore, there is an 
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urgent need for portable, user-friendly diagnostic tools suitable for on- 
site testing by farmers and hatchery operators without specialized 
training or infrastructure.

Loop-mediated isothermal amplification (LAMP) is a promising 
alternative, providing rapid nucleic acid detection with high efficiency, 
specificity, cost-effectiveness, and straightforward visual results 
(Ahmadi et al., 2025; Saifuddin et al., 2024; Yang et al., 2024a). Pre
viously, we developed the handheld WeD-1 isothermal amplification 
device (Pang et al., 2024), which, combined with a customized LAMP 
MasterMix and an enhanced one-pot detection reagent based on pro
karyotic Argonaute (PfAgo), enables real-time fluorescence monitoring 
and duplex visual detection of aquatic pathogens.

Despite these advances, practical implementation at pond-side faces 
two key challenges. First, the current approach involves two separate 
steps—initial LAMP amplification followed by PfAgo enzymatic diges
tion—which increases complexity and cost. Second, existing protocols 
typically require homogenization of internal tissues such as liver or 
spleen, restricting ease of sampling. Notably, viral genomes can also be 
detected in more accessible host fluids such as mucus (Pohl et al., 2024; 
Willner, 2010), blood (Moustafa et al., 2017), pleural or peritoneal fluid 
(Coccolini et al., 2020), and lymph (Melo-Silva and Sigal, 2024). These 
minimally invasive samples can be easily collected using throat swabs or 
simple collection tubes without sacrificing the fish. However, most 
current detection protocols still rely on purified DNA, limiting their true 
field applicability.

To address these limitations, we established an in vitro LMBV 
infection model and evaluated the feasibility of directly testing crude 
lysates obtained from mucus, blood, and peritoneal fluid collected via 
pharyngeal swabs. Using the portable WeD-1 device, we systematically 
assessed the effectiveness of various minimally invasive samples, 
developing a practical, cost-effective, and rapid field-ready method 
suitable for on-site LMBV detection in largemouth bass aquaculture.

2. Materials and methods

2.1. Ethics

All procedures were conducted in accordance with the guidelines of 
the Committee on Laboratory Animal Care and Use of Shanghai Ocean 
University under protocol SHOU-DW-2023-076.

2.2. Fish, cell line and virus

Healthy largemouth bass (Micropterus salmoides), weighing 9.16 ±
2.37 g and measuring 9.00 ± 0.69 cm in length, were purchased from 
Zhejiang Huzhou Nanxun Linghu Chenhao Aquatic Products Operation 
Department (Zhejiang, China). Fish were acclimated for one week in the 
laboratory prior to experimentation (Li and Huang, 2024). The LMBV 
strain (106 TCID₅₀/0.1 mL) and the fathead minnow (FHM) cell line were 
obtained from the National Aquatic Animal Pathogen Bank of Shanghai 
Ocean University. Virus preparation followed with previous described 
method (Dai et al., 2025). Briefly, FHM cells were cultured in Medium 
199 (Gibco, USA, 31100–035) supplemented with 10 % fetal bovine 
serum (Gibco, USA, A5669701) and maintained at 27 ◦C in a 5 % CO₂ 
incubator. Once the cells reached approximately 90 % confluence, they 
were inoculated with LMBV. When 90 % of the cells exhibited cytopathic 
effects (CPE), the virus was harvested and stored at − 80 ◦C. prior to the 
viral infection experiment, the viral stock was thawed at room temper
ature just until fully defrosted, then re-frozen at − 80 ◦C. After three 
freeze–thaw cycles, the virus was stored at − 80 ◦C for long-term 
preservation.

2.3. LMBV infection model and sample collection

A total of 50 largemouth bass were randomly allocated into two 
tanks (100 L each) maintained at 25 ± 2 ◦C. The LMBV suspension used 

for infecting largemouth bass was prepared from the viral stock solution 
described in Step 2.2. Prior to infection, the LMBV titer was determined 
and then diluted with M199 medium to a final concentration of 106 

TCID₅₀/0.1 mL. Ten fish served as the uninfected control group, while 40 
fish were intraperitoneally injected with 200 μL of the LMBV suspension. 
Gill mucus, head mucus, dorsal mucus, anal mucus, peritoneal fluid, and 
blood samples were collected at 24, 48, 72, and 96 h post-infection (hpi), 
as shown in Fig. 3B. Mucus samples were collected using DNA collection 
tubes with swabs, and blood and peritoneal fluid were collected via 
syringe to prevent contamination. Those Crude DNA extracts were either 
immediately used for analysis or stored at − 20 ◦C. Tail fin tissue samples 
were collected using sterilized scissors and stored at − 80 ◦C.

2.4. Total DNA extraction

Genomic DNA was extracted from tail fin tissues using the Blood/ 
Cell/Organ Tissue Genomic DNA Extraction Kit (TIANGEN, China, Cat. 
No. DP304–3). DNA from crude extracts of gill mucus, head mucus, 
dorsal mucus, anal mucus, peritoneal fluid, and blood was further pu
rified with the DNA Viral Genome Extraction Kit (Solarbio, China, Cat. 
No. D2400) for subsequent absolute quantitative PCR analysis.

2.5. Construction of recombinant plasmid pMD™19-T-MCP

The full-length Major capsid protein (MCP) gene of LMBV (1410 bp) 
was amplified using 2× Taq Master Mix (Vazyme, China, Cat. No. P112). 
The PCR reaction mixture (20 μL) consisted of 10 μL 2× Taq Mix, 1 μL 
forward primer (pMCPF, 10 μM), 1 μL reverse primer (pMCPR, 10 μM), 
300 ng total DNA, and nuclease-free water. The PCR primer sequences 
are shown in Table 1. PCR conditions were as follows: initial denatur
ation at 95 ◦C for 5 min; 10 cycles of 95 ◦C for 30 s, 50 ◦C for 30 s, 72 ◦C 
for 90 s; followed by 25 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s, 72 ◦C for 
90 s; and a final extension at 72 ◦C for 10 min. Amplified products were 
visualized by 1 % agarose gel electrophoresis, purified using the QIA
quick Gel Extraction Kit (QIAGEN, Germany, Cat. No. 28106) and 
ligated into the pMD™19-T vector (Takara, Japan, Cat. No. 6013). The 
recombinant plasmid was transformed into E. coli DH5α cells. Plasmid 
DNA was extracted using the EndoFree Plasmid ezFlow Miniprep Kit 
(Biomiga, USA, Cat. No. BW-PD1220) and quantified using a NanoDrop 
One spectrophotometer (Thermo Fisher Scientific).

2.6. Absolute quantitative PCR

The recombinant pMD™19-T-MCP plasmid was serially diluted (10- 
fold) to generate standards ranging from 105 to 1012 copies/mL. qPCR 
assays were performed using SsoFast EvaGreen Supermix (Bio-Rad, USA, 
Cat. No. 1725201) on a CFX Real-Time PCR System (Bio-Rad, USA, 
Model CT043335). Each 20 μL reaction included 10 μL EvaGreen 
Supermix, 1 μL each of forward (MCP-F1, 10 μM), and reverse primers 
(MCP-R1, 10 μM), 5 μL DNA template, and nuclease-free water. The PCR 
primer sequences are shown in Table 1. Cycling conditions were initial 
denaturation at 95 ◦C for 2 min, followed by 40 cycles of 95 ◦C for 30 s 
and 60 ◦C for 30 s. Standard curves were generated by plotting Ct values 
against log₁₀ (copy number), and assays meeting quality criteria (E: 
0.90–1.10; R2 > 0.98) were considered valid. Viral load in samples was 

Table 1 
Primer sequences.

Target Primer Sequence Length 
(bp)

Product 
(bp)

MCP 
gene

pMCPF CGCGGATCCATGTCTTCTGTTACG 24 1410
pMCPR CGCGAATTCTTACAGGATGGGGAA 24

MCP 
gene

MCP- 
F1

CTGTTGTTGGAGCGGGTAA 19 192

MCP- 
R1

GGGCGTAAGAGTAGAGGTGG 20
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determined by interpolation.

2.7. LAMP assays

The LAMP MasterMix used for isothermal amplification, preloaded 
with LMBV-specific primer sets, was prepared following the protocol 
outlined in our previously published study (Pang et al., 2024). For LMBV 
LAMP assays, crude DNA extracts (from step 2.3) were centrifuged at 
12,000 rpm for 5 min. Supernatants (25 μL) were transferred into 
homemade LAMP MasterMix tubes, gently mixed, and briefly centri
fuged. Reaction tubes were placed into the portable WeD-1 isothermal 
amplification device. LAMP reactions proceeded at 65 ◦C for 30 min, 
with real-time fluorescence monitored and images captured at 1-min 
intervals using the device’s mobile application.

2.8. Statistical analysis

Data are presented as mean ± standard deviation (SD) from at least 
three independent experiments. Statistical analyses were performed 
using IBM SPSS Statistics v25. Differences among multiple groups were 
assessed by one-way ANOVA followed by Tukey’s post hoc test. The P 
value <0.05 was regarded statistically significant. Fluorescence in
tensity assays were performed using ImageJ. Graphs were generated 
using GraphPad Prism v8.

3. Result

3.1. Establishment of an in vitro LMBV infection model in largemouth 
bass

An in vitro infection model for LMBV was developed in largemouth 
bass, following the experimental workflow illustrated in Fig. 1A. Fish 

(weight: 9.16 ± 2.37 g; length: 9.00 ± 0.69 cm) were intraperitoneally 
injected with 200 μL of LMBV suspension (106 TCID₅₀/mL). Tail fin 
samples were collected at 24, 48, 72, 96, and 120 h post-infection (hpi) 
to quantify viral loads using absolute qPCR. Results revealed a signifi
cant, time-dependent increase in viral load within tail fin tissues 
(Tukey’s test, P < 0.05). At 96 hpi, infected fish exhibited characteristic 
pathological features, including distinct white lesions on the liver, which 
corresponded to peak viral load and matched previously reported clin
ical observations (Xu et al., 2023; Zilberg et al., 2000). These results 
confirm the successful establishment of the LMBV infection model.

3.2. Peritoneal fluid showed the highest viral load among collected 
samples

To identify suitable samples for LAMP-based detection, we collected 
mucus from the gills, head, dorsal region, and anus of largemouth bass 
using pharyngeal swabs. Additionally, approximately 20 μL each of 
blood and peritoneal fluid were aspirated using syringes and placed into 
nucleic acid collection tubes (Fig. 2B). Viral genomic DNA from these 
crude extracts was purified using a viral DNA extraction kit and quan
tified by absolute qPCR according to the workflow shown in Fig. 2A. 
Quantification results revealed that peritoneal fluid consistently 
exhibited the highest viral load at each tested time point (Fig. 2C), 
displaying a statistically significant increase over time (Fig. 2I, P <
0.05). Gill mucus, dorsal mucus, anal mucus, and blood also showed 
significant increases in viral loads across these time points (P < 0.05). 
However, head mucus samples did not show statistically significant 
variation in viral load over time (Fig. 2D-H).

Fig. 1. Establishment of an in vitro LMBV infection model in largemouth bass. 
(A) Schematic workflow for the establishment and phenotypic characterization of the LMBV infection model. Largemouth bass were injected with 200 μL of LMBV 
(106 TCID₅₀/0.1 mL), and tail fin tissues were collected at 24, 48, 72, 96, and 120 h post-infection (hpi) for quantification of viral load by absolute qPCR. 
(B) Viral loads in tail fin tissues at various time points post-infection. Different letters (a–d) indicate significant differences (Tukey’s test, P < 0.05). 
(C) Anatomical image of largemouth bass at 96 hpi. White lesions in the liver region are indicated by white circles. Scale bar = 1 cm.
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Fig. 2. Absolute quantification of LMBV loads in mucus, blood, and peritoneal fluid samples from largemouth bass. 
(A) Experimental workflow for viral DNA quantification. Fish were injected with 200 μL LMBV (106 TCID₅₀/0.1 mL), followed by sample collection at multiple time 
points. Purified DNA extracts were analyzed by absolute qPCR. 
(B) Representative images of sample collection from different anatomical sites. 
(C) Comparative viral loads across different sample types and time points, highlighting consistently highest levels in peritoneal fluid. 
(D-I) Individual graphs showing viral loads in gill mucus, head mucus, dorsal mucus, anal mucus, blood, and peritoneal fluid. Different letters (a–d) indicate sig
nificant differences (Tukey’s test, P < 0.05).
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3.3. Peritoneal fluid provided the highest detection efficiency using the 
LAMP assay and WeD-1 device

To evaluate the feasibility of using crude DNA extracts directly for 
LAMP detection, 25 μL of each crude DNA extract was added to the 
LAMP reaction mix. Following 30 min of amplification, peritoneal fluid 
and anal mucus yielded the highest positive detection rates (7/8 each), 
while gill mucus exhibited the lowest detection rate (1/8; Fig. 3B). 
During the experiment, we observed that cell debris in the crude DNA 
extracts inhibited the LAPM reaction. In the subsequent LAMP analysis, 
we centrifuged the crude extract at 12000 rpm for 5 min and used the 
supernatant for the LAMP assays. Crude DNA extracts from gill mucus, 
head mucus, dorsal mucus, anus mucus, blood, and peritoneal fluid 
collected at 96 hpi were subjected to LAMP assays. Fluorescence from 
the peritoneal fluid reaction was first visible to the naked eye after 30 
min of amplification (Supplementary Fig. 1A). By 35 min, signals from 
head mucus, dorsal mucus, and blood were also detectable (Supple
mentary Fig. 1B). Real-time fluorescence monitoring further confirmed 
that peritoneal fluid produced the most robust and reliable signal 
(Supplementary Fig. 1C). Further LAMP assays of peritoneal fluid sam
ples collected at different time points post-infection demonstrated 
consistently high positivity, achieving 100 % detection by 48 hpi. These 
results confirm peritoneal fluid as the most reliable sample type for 
rapid, on-site LAMP-based detection of LMBV.

3.4. Real-time LAMP amplification from peritoneal fluid peaked at as 
early as 15 min

Real-time fluorescence signals from LAMP amplification were 
monitored over 30 min using the WeD-1 device. Fluorescence intensity 
statistics were performed using ImageJ. As is shown in Fig. 4B, the 
positive control reached peak fluorescence intensity around 10 min. 
Peritoneal fluid and head mucus samples peaked at approximately 15 

min, blood at 20 min, and anal mucus at 25 min. Gill and dorsal mucus 
samples failed to reach the exponential amplification phase, likely due 
to low viral loads or the presence of inhibitory substances.

4. Discussion

Largemouth Bass Ranavirus (LMBV) poses a significant threat to the 
sustainability of the largemouth bass aquaculture industry. Early path
ogen detection and routine screening are crucial for preventing the 
spread of infections and maintaining aquaculture health. However, 
conventional PCR-based methods for LMBV detection require compli
cated procedures, extensive laboratory equipment, skilled personnel, 
and lengthy processing times, making them impractical for rapid on-site 
application. Therefore, there is an urgent need for a simpler, faster, and 
more cost-effective alternative suitable for widespread field deploy
ment. Therefore, LAMP assays were introduced in this study because it 
offers several advantages, including high amplification efficiency, 
strong specificity, and compatibility with visual detection methods 
(Ahmadi et al., 2025; Saifuddin et al., 2024; Yang et al., 2024a). 
Therefore, the LAMP assay was employed in this study due to its high 
amplification efficiency, strong specificity, and compatibility with visual 
detection methods (Ahmadi et al., 2025; Saifuddin et al., 2024; Yang 
et al., 2024a).

In this study, we established a robust in vitro LMBV infection model 
in largemouth bass (Micropterus salmoides), enabling controlled evalua
tion of rapid diagnostic techniques. Following intraperitoneal injection 
of LMBV (106 TCID50/0.1 mL), viral replication was confirmed in 
infected fish tissues, with characteristic pathological signs—such as 
distinct white liver lesions—evident by 96 h post-infection (hpi). The 
successful establishment of this infection model provided a reliable 
foundation for assessing diagnostic assays.

Previous studies have demonstrated that mucus samples can be used 
for the detection of LMBV pathogens in largemouth bass (Getchell et al., 

Fig. 3. LAMP detection performance using crude DNA extracts and the WeD-1 device. 
(A) Workflow illustrating the LAMP assay using crude extracts. Samples were mixed with the LAMP MasterMix and amplified at 65 ◦C for 30 min using the WeD-1 
device. 
(B) Detection results from crude DNA extracts at 96 hpi, showing positive detection rates for each sample type. Peritoneal fluid and anal mucus exhibited the highest 
positivity (7/8), followed by head and dorsal mucus (6/8), blood (4/8), and gill mucus (1/8). Positive control (PC) and negative control (NC) yielded 8/8 and 0/8, 
respectively. 
(C) Detection rates in peritoneal fluid samples collected at 24, 48, 72, and 120 hpi, with consistent detection from 48 hpi onwards. 
(D) Representative gel image of LAMP amplification products from peritoneal fluid at 48 hpi, showing multiple DNA ladder-like bands characteristic of positive 
LAMP reactions.
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2007; Leis et al., 2018). Using minimally invasive sampling techniques, 
we demonstrated that mucus from various anatomical regions, as well as 
blood and peritoneal fluid, contained detectable viral DNA suitable for 
diagnostic purposes. Notably, peritoneal fluid consistently exhibited the 
highest viral loads (ranging from 105 to 1010 copies/mL) and provided 
optimal sensitivity for pathogen detection. This finding highlights the 
potential of peritoneal fluid as the most effective sample type for early 
LMBV diagnosis.

To facilitate rapid, simplified detection, we employed a purification- 
free loop-mediated isothermal amplification (LAMP) protocol combined 
with a portable fluorescence detection device (WeD-1). Unlike conven
tional PCR and previous nucleic acid-based methods (Guang et al., 2024; 
Guo et al., 2022; Jiang et al., 2023; Jin et al., 2020; Li et al., 2022; Zhu 
et al., 2020; Zhu et al., 2022), our protocol does not require sample 
homogenization, nucleic acid purification, or specialized laboratory 
infrastructure. Crude lysates derived directly from peritoneal fluid 
samples yielded strong fluorescent signals and high positivity rates in 
LAMP assays, achieving 100 % detection accuracy within 48 hpi. 
Furthermore, real-time fluorescence monitoring indicated that positive 
amplification signals could be detected within approximately 15 min, 
enabling rapid diagnostic decisions.

Collectively, our study presents several significant advancements: 
(Zhu et al., 2020) we developed a purification-free LAMP protocol 
enabling rapid and direct detection of LMBV using minimally invasive 
samples, greatly simplifying field diagnostics; (Pohl et al., 2024) we 
identified peritoneal fluid as an optimal sample source for highly sen
sitive and early-stage viral detection; and (Willner, 2010) we validated a 
portable and cost-effective fluorescence-based diagnostic platform 
(WeD-1) capable of delivering accurate, user-friendly results within 40 
min. This streamlined approach provides a powerful tool for aquaculture 
health management and has significant potential to be adapted for the 
rapid detection of other aquatic pathogens.
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